Sunday, December 3, 2023
Google search engine
HomeUncategorizedA deep-learning search for technosignatures from 820 nearby stars

A deep-learning search for technosignatures from 820 nearby stars

Data availability

All data used in this paper are stored as high-resolution FILTERBANK and HDF5 format collected and generated from observations by the Robert C. Byrd Green Bank Telescope, which are available through the Breakthrough Listen Open Data Archive at http://seti.berkeley.edu/opendata.

References

  1. Cocconi, G. & Morrison, P. Searching for interstellar communications. Nature 184, 844–846 (1959).

    Article 
    ADS 

    Google Scholar
     

  2. Tarter, J. The search for extraterrestrial intelligence (SETI). Annu. Rev. Astron. Astrophys. 39, 511–548 (2001).

    Article 
    ADS 

    Google Scholar
     

  3. Enriquez, J. E. et al. The Breakthrough Listen search for intelligent life: 1.1–1.9 GHz observations of 692 nearby stars. Astrophys. J. 849, 104 (2017).

    Article 
    ADS 

    Google Scholar
     

  4. Price, D. C. et al. The Breakthrough Listen search for intelligent life: wide-bandwidth digital instrumentation for the CSIRO Parkes 64-m telescope. Publ. Astron. Soc. Aust. 35, E041 (2018).

  5. Price, D. C. et al. The Breakthrough Listen search for intelligent life: observations of 1327 nearby stars over 1.10–3.45 GHz. Astron. J. 159, 86 (2020).

    Article 
    ADS 

    Google Scholar
     

  6. Price, D. C. et al. Expanded capability of the Breakthrough Listen Parkes data recorder for observations with the UWL receiver. Res. Notes AAS 5, 114 (2021).

    Article 
    ADS 

    Google Scholar
     

  7. Enriquez, E. & Price, D. turboSETI: Python-based SETI search algorithm. Astrophysics Source Code Library ascl:1906.006 (2019).

  8. Harp, G. R. et al. Machine vision and deep learning for classification of radio SETI signals. Preprint at https://arxiv.org/abs/1902.02426 (2019).

  9. Zhang, Z.-S. et al. First SETI observations with China’s Five-hundred-meter Aperture Spherical Radio Telescope (FAST). Astrophys. J. 891, 174 (2020).

    Article 
    ADS 

    Google Scholar
     

  10. Pinchuk, P. & Margot, J.-L. A machine learning–based direction-of-origin filter for the identification of radio frequency interference in the search for technosignatures. Astron. J. 163, 76 (2022).

  11. Czech, D., Mishra, A. & Inggs, M. A CNN and LSTM-based approach to classifying transient radio frequency interference. Astron. Comput. 25, 52–57 (2018).

    Article 
    ADS 

    Google Scholar
     

  12. Zhang, Y. G., Hyun Won, K., Son, S. W., Siemion, A. & Croft, S. Self-supervised anomaly detection for narrowband seti. In 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP) 1114–1118 (IEEE, 2018).

  13. Brzycki, B. et al. Narrow-band signal localization for SETI on noisy synthetic spectrogram data. Publ. Astron. Soc. Pac. 132, 114501 (2020).

    Article 
    ADS 

    Google Scholar
     

  14. Higgins, I. et al. β-VAE: Learning basic visual concepts with a constrained variational framework. In International Conference on Learning Representations (ICLR, 2017).

  15. Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. In 2nd International Conference on Learning Representations (ICLR, 2014); http://arxiv.org/abs/1312.6114v10.8/25

  16. Czech, D. et al. The Breakthrough Listen search for Intelligent Life: MeerKAT target selection. Publ. Astron. Soc. Pac. 133, 064502 (2021).

    Article 
    ADS 

    Google Scholar
     

  17. Hickish, J. et al. Commensal, multi-user observations with an ethernet-based Jansky Very Large Array. Bul. Am. Astron. Soc. 51, 269 (2019).

  18. Siemion, A. et al. Searching for extraterrestrial intelligence with the square kilometre array. In Proceedings of Advancing Astrophysics with the Square Kilometre Array—PoS(AASKA14) (Sissa Medialab, 2015).

  19. LeCun, Y., Haffner, P., Bottou, L. & Bengio, Y. in Shape, Contour and Grouping in Computer Vision: Lecture Notes in Computer Science (eds Forsyth, D. A. et al.) 319–345 (Springer, 1999); https://doi.org/10.1007/3-540-46805-6_19

  20. Snoek, J., Larochelle, H. & Adams, R. P. Practical Bayesian optimization of machine learning algorithms. In Advances in Neural Information Processing Systems 25 (NIPS, 2012).

  21. Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous systems (TensorFlow, 2015); https://www.tensorflow.org/

  22. Chollet, F. et al. Keras (Keras, 2015); https://keras.io

  23. Mitchell, T. M. The Need for Biases in Learning Generalizations. Tech. Rep., Rutgers University (1980).

  24. Breiman, L. Random forests. Machine Learning 45, 5–32 (2001).

    Article 
    MATH 

    Google Scholar
     

  25. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article 

    Google Scholar
     

  26. LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989).

    Article 

    Google Scholar
     

  27. Cristianini, N. & Ricci, E. in Encyclopedia of Algorithms (ed, Kao, M.-Y.) 928–932 (Springer, 2008); https://doi.org/10.1007/978-0-387-30162-4_415

  28. Lebofsky, M. et al. The Breakthrough Listen search for intelligent life: public data, formats, reduction, and archiving. Publ. Astron. Soc. Pac. 131, 124505 (2019).

    Article 
    ADS 

    Google Scholar
     

  29. Price, D., Enriquez, J., Chen, Y. & Siebert, M. Blimpy: Breakthrough Listen I/O methods for Python. J. Open Source Softw. 4, 1554 (2019).

    Article 
    ADS 

    Google Scholar
     

  30. Lam, S. K., Pitrou, A. & Seibert, S. Numba: A LLVM-based Python JIT compiler. In Proc. Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15 1–6 (Association for Computing Machinery, 2015); https://doi.org/10.1145/2833157.2833162

  31. Sochat, V. Singularity compose: orchestration for singularity instances. J. Open Source Softw. 4, 1578 (2019).

    Article 
    ADS 

    Google Scholar
     

  32. Siemion, A. P. V. et al. A 1.1–1.9 GHz SETI survey of the Kepler field. I. A search for narrow-band emission from select targets. Astrophys. J. 767, 94 (2013).

    Article 
    ADS 

    Google Scholar
     

  33. Perryman, M. A. C. et al. The Hipparcos Catalogue. Astron. Astrophys. 500, 501–504 (1997).

    ADS 

    Google Scholar
     

Download references

Acknowledgements

Breakthrough Listen is managed by the Breakthrough Initiatives, sponsored by the Breakthrough Prize Foundation (http://www.breakthroughinitiatives.org). We are grateful to the staff of the Green Bank Observatory for their help with installation and commissioning of the Breakthrough Listen backend instrument and extensive support during Breakthrough Listen observations. P.X.M. was supported by the Laidlaw foundation, which has funded this project as part of the undergraduate research and leadership funding initiative. S.Z.S. acknowledges that this material is based on work supported by the National Science Foundation MPS-Ascend Postdoctoral Research Fellowship under grant number 2138147. We thank Y. Chen for helpful discussion on the machine-learning framework. P.X.M. thanks L. Doyle and S. Marzen for their kind support, generous guidance and encouragement when he first began his research career.

Author information

Authors and Affiliations

  1. Department of Mathematics, University of Toronto, Toronto, Ontario, Canada

    Peter Xiangyuan Ma

  2. Department of Physics, University of Toronto, Toronto, Ontario, Canada

    Peter Xiangyuan Ma

  3. Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, Ontario, Canada

    Peter Xiangyuan Ma, Cherry Ng & Leandro Rizk

  4. Breakthrough Listen, University of California, Berkeley, Berkeley, CA, USA

    Cherry Ng, Steve Croft, Andrew P. V. Siemion, Bryan Brzycki, Daniel Czech, Vishal Gajjar, John Hoang, Howard Isaacson, Matt Lebofsky, David H. E. MacMahon, Imke de Pater, Danny C. Price & Sofia Z. Sheikh

  5. SETI Institute, Mountain View, CA, USA

    Cherry Ng, Steve Croft & Andrew P. V. Siemion

  6. Jodrell Bank Centre for Astrophysics (JBCA), Department of Physics & Astronomy, Alan Turing Building, The University of Manchester, Manchester, UK

    Andrew P. V. Siemion

  7. Institute of Space Sciences and Astronomy, University of Malta, Valletta, Malta

    Andrew P. V. Siemion

  8. Breakthrough Initiatives, Moffett Field, CA, USA

    Jamie Drew & S. Pete Worden

  9. Centre for Astrophysics, University of Southern Queensland, Toowoomba, Queensland, Australia

    Howard Isaacson

  10. Department of Astronomy, University of California, Berkeley, CA, USA

    Imke de Pater

  11. International Centre for Radio Astronomy Research, Curtin University, Bentley, Western Australia, Australia

    Danny C. Price

Contributions

P.X.M. designed and led the data analysis under the supervision of C.N. with both of them being primary authors of the manuscript. L.R. led the visualization of the candidate diagnostic plots. A.P.V.S., B.B., D.C., V.G., J.H., I.d.P., D.C.P. and S.Z.S. assisted with interpretation, manuscript preparation and revision, and data analysis. S.C. and H.I. helped with the GBT observations and aided manuscript preparation. M.L. and D.H.E.M. provided instrument support, managed data, and aided observations. J.D. and S.P.W. aided manuscript preparation and provided logistical support.

Corresponding author

Correspondence to
Peter Xiangyuan Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Devansh Agarwal, Tong-Jie Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, P.X., Ng, C., Rizk, L. et al. A deep-learning search for technosignatures from 820 nearby stars.
Nat Astron (2023). https://doi.org/10.1038/s41550-022-01872-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-022-01872-z

Read More

RELATED ARTICLES

LEAVE A REPLY

Please enter your comment!
Please enter your name here

- Advertisment -
Google search engine

Most Popular

Recent Comments